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ABSTRACT
NASA Unmanned Flight Anomaly Reports

The NASA Unmanned Flight Anomaly Reports present the results of a series of analyses of
in-flight hardware anomalies which have occurred on Jet Propulsion Laboratory (JPL),
Goddard Space Flight Center (GSFC), and U.S. Air Force unmanned space programs. All of
these analyses are funded by NASA Code QT under Research Technology Operation Plan
(RTOP) 623-63-03, entitled Flig ht Anomaly Characterization. The ob ective of these
analyses is to search for meaningful characterizations of in-flight anomaly data including any
trends, patterns, or similarities that can be exploited to improve Product Assurance Program
processes, ultimately leading to reduced numbers of anomalies on future unmanned flight
programs.

This report addresses in-flight, hardware anomalies that have affected the uplink or
downlink process, including science data, on six JPL spacecraft: Viking 1 and 2, Voyager 1
and 2, Magellan and Galileo. All of these programs were Class A missions as now defined
by JPL D-1489, Flig ht Equip ment Classi;ications and Product Assurance Requirements. An
important finding of the analysis was that all of the spacecraft studied, except Viking 1
would have experienced a ma or failure of the uplink or downlink process if there had not
been functional redundancy on board the spacecraft. This finding has significance for
Product Assurance programs on future systems. The implication is that some subsystem
redundancy is essential to successful interplanetary missions. A chart was developed, based
on the JPL data, showing expected probability of success as a function of flight time for
single-string spacecraft which may be useful for new spacecraft designs. The frequency of
serious anomalies on previous Class A missions strongly suggests that this conclusion be
applied to non-Class A missions as well.

The data also suggests that the analysis performed when ground test failures occurred has
been generally successful in predicting flight performance and preventing catastrophic
failures, even though in-flight failures did occur. This issue becomes much more critical for
the expected single-string missions of the future, but the results indicate that it can be done,
given full understanding of the underlying "physics of failure" and a willingness to take the
programmatic steps which that understanding dictates.

For further information on the content of this report, contact Arthur Brown at (818) 542-
6950. For additional copies of this document, contact the JPL Document Vellum Files at
extension 4-5004.
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SUBJECT: Analysis of Uplink/Downlink Anomalies on Six JPL Spacecraft

SUMMARY

This report presents the results of an analysis of in-flight anomalies related to the uplink and
downlink process on six JPL spacecraft. In addition to telecommunications link failures,
failures that caused a loss of critical data were also considered. Eighteen of a total of 82
anomalies were related to the uplink and/or downlink process in some way. An important
finding of the analysis was that a significant degradation or failure of the uplink/downlink
process would have occurred on every JPL mission, except Viking 1, had it not been for
functional redundancy. Sometimes, this redundancy was provided within the Radio
Frequency Subsystem (RFS) and at other times by or within other subsystems such as gyros
or reserve memory. This result has significance for future spacecraft programs, arguing
against a relaxation of JPL D-1489 redundancy requirements, in most instances, at least for
selected subsystems. Other groupings of anomalies led to recommendations for more
intensive screening or modified ground testing in certain instances, and an increased
emphasis on understanding the underlying physics of failure in all pre-flight, ground-test
failures prior to launch. "Physics of failure" is suggested as an improved way of redirecting
Product Assurance analyses and conveying prior space flight experience to the new
generation of design and Mission Assurance engineers.
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I INTRODUCTION

Background:

NASA Unmanned Flight Anomaly Reports document a series of investigations funded under NASA
RTOP 623-63-02, entitled Flig ht Anomaly Characterization (FAC . The FAC subtask is part of the
Product Assurance Per;ormance Assessment (PAPA , a study of ways to improve product assurance
processes based on historical experience. The FAC and PAPA are being performed by the
Reliability Engineering Section at the Jet Propulsion Laboratory, Pasadena, CA. Under funding
provided by NASA Code QT, a database of in-flight hardware anomalies called the Payload Flight
Anomaly Database (PFAD) was developed and is being maintained to support FAC and PAPA
studies. The PFAD database and associated software possess capabilities for screening anomaly
data and generating certain high-level statistics from that data.

Scope:

This report is part of a planned series of NASA Unmanned Flight Anomaly Reports. It presents the
findings of an analysis of in-flight hardware anomalies which affected the telecommunications
uplink/downlink process on JPL spacecraft, causing at least a temporary loss or significant
degradation of signal or essential data. The investigation is limited to the Viking, Voyager, Galileo
and Magellan missions. The study is limited to hardware anomalies to reflect the fundamental
charter of the JPL Reliability Engineering Section and to conform to the intent of RTOP 623-63-02.
The obective of the analysis is to make recommendations for improving product assurance
processes based on in-flight experience.

1I. DISCUSSION
Method:

The method used in identifying the uplink/downlink anomalies for analysis is described in reference
(1). The method involves the development of two flow diagrams. The first is a diagram showing
the data contained in the PFAD about each in-flight anomaly. Anomalies that appear to be related
are marked for subsequent analysis. A second diagram is then created, combining related anomalies
into a single group for more intensive analysis. A separate diagram is prepared for each proposed
characterization of the data. Analysis is performed on these diagrams to determine if the proposed
correlation is valid or not, and to assess the implications this might have for future product assurance
programs.

Data Analysis:

Based on the initial flow diagram developed and reported in reference (1), eleven candidate
characterizations of the JPL in-flight anomaly data were identified for subsequent analysis.
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These are:

(1)  RF Subsystem (Uplink/Downlink) Degradation
(2) Environmental Vulnerability (Thermal, Shock/Vibration, Radiation and EMC).
(3) Mechanical Positioning Anomalies
(4) Memory Anomalies
(5) Debris/Contamination Anomalies
(6) Tape Recorder Anomalies
(7)  Thermal Sensor (Mis)application
(8) Gyro Anomalies
(9) Pyrotechnic Anomalies
(10)  Structural Interferences
(11)  Part Application Anomalies

Telemetry anomalies comprise the largest single percentage of the JPL in-flight anomalies
investigated. This result was obtained by screening the JPL data for Viking, Voyager, Magellan and
Galileo using PFAD and was reported in reference (1). Since some failures in other subsystems also
resulted in a loss/degradation of the communication data stream it was decided to include those
anomalies also and to generalize the analysis to consider any uplink/downlink anomalies, regardless
of the subsystem that failed.

1. RESULTS

Figure 1 presents a flow diagram of all RF subsystem (RFS) anomalies that interrupted or seriously
degraded the uplink/downlink process for the four JPL missions. In order to be included in Figure
1, an anomaly only had to interrupt or seriously degrade an important portion of the communications
or science data stream; it did not have to cause complete loss of telecommunications data.
Anomalies that appear to share a common "lesson learned" have been grouped as shown in Figure
1. The last column presents proposed ways of applying these "lessons learned" to future product
assurance programs. Table 1 presents a summary of product assurance implications, extracted from
Figure 1.

Figure 2 presents a similar flow diagram for all non-RFS anomalies that interrupted or seriously
degraded the uplink/downlink data stream. Table 2 summarizes the product assurance implications
of the analysis of non-RFS anomalies. The combined findings from both diagrams are discussed
below.
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The bottom of Figure 1 is continued on this page
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Subsystem Redundancy

One significant finding of this investigation was that subsystem redundancy saved five of the six JPL
spacecraft studied, from a failure of the uplink and/or downlink ranked as catastrophic. On Voyager
1, Voyager 2 and Magellan, redundancy salvaged the uplink/downlink more than once on the same
spacecraft. Table 3 lists the eight catastrophic failures. "Catastrophic", as it is used here, means a
loss of uplink and/or downlink communications or a significant loss of science data. "Redundancy",
as it is used here, means that another subsystem, capable of performing the same or an equivalent
function was available on board the spacecraft. The table also lists two non-catastrophic failures
(Viking 1 P/FR 35412 and Magellan P/FR 52243) which interrupted or seriously degraded the
downlink signals. In the Magellan anomaly, at 22.5 months, Transmitter B produced degraded data
and was switched out in favor of Transmitter A. Degraded Transmitter B was switched back in eight
months later when Transmitter A failed completely. Even though both transmitters failed, only the
Transmitter A failure was counted as being catastrophic and salvaged by redundancy.

In the Viking 1 anomaly, at 13.7 months, the DSN could not lock up with the Viking Orbiter
downlink signal. The problem resulted from five bad locations in the Command Control Subsystem
(CCS) B' memory. At the time of the failure, the 'B' memory stored only the error correction
routines; all other spacecraft functions were running on the 'A' memory. A memory location in 'B'
memory that set the maximum allowable time the spacecraft would wait without receiving a sun
reference went from a ONE to a ZERO. When the spacecraft went through a sun occultation, the
error in the timing reference caused the spacecraft to prematurely initiate a sun-loss routine. It
switched to the low gain antenna (LGA) and reduced the data rate. The DSN which was expecting
a higher signal level and data rate lost acquisition. A work-around was developed by not using the
faulty memory locations and the 'B' memory subsequently worked successfully. Surplus memory
capacity (minimal) was shown to be necessary, but redundant memory was not. The anomaly was
listed as non-catastrophic.

Viking, Voyager and Magellan, were all considered eminently successful missions, but would have
experienced significant failures had redundancy not been built into the hardware. In the current
funding environment, there is strong pressure for cost reductions on programs and there is an
increasing tendency toward less-than-Class A programs. Class A is the only mission class in JPL
D-1489 that requires redundancy of essential functions. To quote the Class A requirement:

"Success-critical single failure points (SFP) are not permitted if avoidable by functional or

block redundancy. Unavoidable single failure points must have a Category B pro ect waiver
with "ustification based on risk analysis and measures implemented to minimize risk."

10
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The flight history on earlier programs must be kept in mind when considering relaxation of this
requirement for critical functions, such as the telecommunications link. The evidence confirms that
there is a significant probability that a spacecraft with single-channel communications will
experience a significant failure of the telecommunications process.

Estimating the Probability of Success

Quantifying this probability from such limited data provides little statistical confidence, but the data
can give a certain "engineering feel" which might influence future decisions about spacecraft
redundancy. Based on the data from the six JPL spacecraft studied, Table 3 shows eight failures
which would have been catastrophic, except for redundancy. If only the RFS failures are
considered, four failures would have effectively disabled Voyagers 1 and 2, Magellan and Galileo.
Assuming that each of the six spacecraft had simple dual channel redundancy of critical functions,
Milena Krasich calculated the probability of success for a single-channel system as a function of
time from launch. The first plot is for RFS failures only and the second is for all catastrophic
failures that interrupted the uplink or downlink data stream. These results are shown in Figures 3
and 4. A Weibull distribution (decreasing failure rate) was found to fit the data better than an
exponential distribution (constant failure rate), and the figures assume the Weibull. The three curves
in each figure give the 90% upper and lower confidence limits on the point estimate of the shape
parameter 3. Her calculations are reported in reference (5).

It should be pointed out that these figures are based on very limited failure data and include only
data stream and telecommunications failures. Inclusion of catastrophic failures (if they exist) in
critical subsystems which are not associated with the uplink/downlink process will further reduce
the estimate of mission success probability. The figures should be used cautiously, and
supplemented with other data if available. Reference (3) reports data on earlier JPL programs which
experienced substantially fewer telecommunications failures. Nevertheless, the data reported here
represent the most recent twenty years of JPL flight history on Class A missions, and should
certainly bear heavily on future decisions about telecommunications redundancy.

The principle which enabled so many JPL missions to be successful in spite of numerous in-flight

failures is simply the large improvement in reliability that results when a functionally equivalent
redundant subsystem is added to a single-string system.
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Additional Ground Testing Implications

Five anomalies were experienced which appeared to be potentially preventable by additional
screening or ground tests. This issue was addressed in both references (2) and (4) which
investigated the ground tests performed on Voyager 1, Magellan and Galileo in considerable detail,
and those findings are referenced here, as appropriate. Table 4 lists the anomalies. The additional
tests fall into four broad categories:

Burn-In of Piece Parts. Failure of the MSC 3005 r.f. power transistor, manufactured by
Microwave Semiconductor Corporation, was responsible for two Voyager anomalies. One
failure occurred on Voyager 2 at 2.6 months and the other on Voyager 1 at 6.7 months after
launch. At the time the failure analysis was done, the analysts recommended that the MSC
3005 and similar transistors without a metal emitter barrier not be used on future systems.
They also recommended that the transistors be adequately burned-in. Reference (2) states
that the failure mechanism was migration of the aluminum emitter contact into the emitter
exacerbated by high temperature due to a poor heat sink solder -oint.

The issue of the MSC 3005 was discussed with the JPL semiconductor components group,
and it was verified that the device is no longer used on any current JPL spacecraft. Adequate
burn-in is routinely performed on all space qualified semiconductors, and should not be an
issue on modern spacecraft, unless some proposal is made to waive it in an effort to reduce
costs.

The 1ssue raised by poor thermal conductivity to the heat sink, either due to a faulty solder
-oint or some other type of heat sink connection could potentially be resolved by performing
a thermal scan on electronic assemblies. The test should be reasonably inexpensive to run
and could be combined with other electrical tests. Any devices with poor heat conductivity
will rise in temperature above predicted levels during powered operation. The thermal scan
would highlight devices with a poor heat sink connection, and steps could be taken to correct
the thermal conduction path. The test is undoubtedly cheaper than power-on vibration and
should be more effective in finding this kind of failure.

Thermal Cycling of Hybrid Microcircuits. Magellan experienced one in-flight failure of
a hybrid microcircuit which the manufacturer attributed to a failed chip capacitor aggravated
by damage during assembly. Although non-catastrophic, this was a significant failure, and
the transmitter was switched out. Thermal cycling was recommended by the analysts as a
way to screen out similar failures.

Thermal cycling has both positive and negative effects, and its use should be considered
‘udiciously on space systems. The advisability of thermal cycling cannot be resolved based
on this single failure. Other RTOP activity is currently underway which indicates that the
bulk of failures are removed during the first thermal cycle and further temperature cycling
may actually induce failures that would not otherwise have occurred during flight.

14
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Resolution of the thermal cycling question will be left to other investigators. For the
purposes of the FAC study, any in-flight failures where thermal cycling appears to be a
potential solution will be reported to the analysts performing the thermal cycling studies.

Ground Tests of the Galileo HGA. Failure of the Galileo High Gain Antenna (HGA) to
deploy when commanded resulted in a nearly catastrophic failure of the Galileo mission. The
mission has been about 70% salvaged by using the Low Gain Antenna at much reduced data
rates and by introducing data compression techniques. In reference (4), Michael Johnson
reports extensive analysis that proves rather conclusively that additional ground testing
would not have detected the problem. The analysis finds that the most probable cause of
failure was retention of the antenna ribs at the mid-point due to excessive friction, galling
or adhesion. The postulated increased friction was caused by a round-end pin in a V-groove
socket which produced contact stresses high enough to remove a molybdenum disulfide dry-
lubricant coating. In a vacuum environment, aggravated by vibration, the pins developed
very high friction in the sockets and could not deploy the antenna. A unique sequence of
events which could not have been reproduced during the test program had to occur to induce
the failure:

(1)  Vibration under atmospheric conditions which accelerated the removal of the
MoS, coating. This occurred during the several trips to the Cape and during
ground tests.

(2) Vibration under vacuum conditions to produce galling of the titanium pins.
This occurred during the upper stage burn of the launch system.

If there are messages for the product assurance program in the HGA deployment failure, they
are probably these:

(D) There are some failure mechanisms that require a sequence of environments
that will probably never be predictable or reproducible during ground tests.

(2) Inheritance of hardware from other space programs can give a false sense of
security. There were significant differences in the environment of the
Galileo mission and the TDRS program from which the HGA design was
inherited. These may have been exacerbated by the VEEGA (Venus-earth-
earth-gravity-assist) mission which was added after the antenna had already
been selected. VEEGA resulted in a much longer duration under vacuum
conditions and increased temperatures over the originally planned mission.
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(3)  Even though spacecraft and missions change, the underlying physics of
failure does not. What is needed is a way to record the failure physics that
are involved in observed flight failures and convey that information to the
new generation of design engineers and reliability analysts so the same errors
are not repeated in subsequent missions. In this case, the following advice
might be recorded for future spacecraft programs to consider:

"Round pins in V-grooves under continuous pressure create two points of
extremely high stress. These have been shown to be capable of removing
lubricant coatings, causing galling, high friction, and potentially cold
welding. Vibration, vacuum and long-term pressure stress aggravates the
friction. Watch for these conditions during design, FMECA and fault tree
analyses"

VSWR Tests of High Gain Antenna Drive. Voyager 2 experienced an incorrect drive
reading at the High Gain Antenna which was determined by subsequent ground tests to be
the result of a mismatch at the second harmonic of the drive frequency. Although this raises
the question of why the mismatch was not noticed during pre-launch testing, the impact on
the mission was negligible and there was only one in-flight anomaly of this type. The effect
appears to be second-order and to have little impact on product assurance issues.

Discounted Ground Test Failures - Magellan and Galileo Anomalies. Two anomalies
related to the uplink/ downlink process that occurred in-flight had previously occurred
during ground tests, but were discounted as having minor potential effect in-flight. A
travelling wave tube amplifier, TWTA-A, on the Magellan spacecraft, experienced 5 shut-
offs during flight. In all cases, the TWTA came back on, (but caused operational
difficulties.) This same problem had occurred four times during ground tests. On the
Galileo spacecraft, Local Oscillator (LO) drive dropped out on one of the receivers after one
day of flight. LO drive recovered during the second deployment phase. A similar dropout
had occurred during ground vibration tests.

These two results may have a significant implication for future spacecraft programs in which
lower cost must be traded against additional risk. Both of the failures were anticipated prior
to launch, and a considered 'udgement was made that the flight risk was acceptable. When
similar failures occurred in-flight, they, in fact, had a minor impact (although not
insignificant) on the mission, as predicted. The message for future programs is that risks
can be taken when glitches occur during ground testing, provided the potential in-flight
results are adequately analyzed. Based on the available evidence, the mission result of such
decisions in the past, at least for uplink/downlink issues, has been positive, i.e., the
spacecraft have flown successfully, even though similar in-flight failures occurred.

Despite the success in these two instances, there is another message for product assurance
programs in the TWTA shut-off failure. A change in mentality is needed when ground test
failures occur. Every ground test failure must be thoroughly resolved before clearing
hardware for launch. Ground test failures should be considered "golden," i.e., the fact that
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they occurred during ground tests rather than in-flight is a piece of good fortune.
Understanding and fixing them will never be easier or cheaper. There can be a desire,
because of launch schedules or cost constraints, to attempt to find a "quick fix". In these two
cases, a determination was made that a similar failure in-flight would have only a minor
impact and the hardware could be flown. So long as the TWTA or LO came back on, the
effect would, at worst, be a temporary loss of data. The potential flaw in such arguments is
that until the underlying failure mechanism is understood, there is no assurance that the next
failure will be "similar", i.e., that the TWTA or LO will necessarily restart.

In these instances, there was always a second channel that could be brought into service if
the first one failed. As single channel systems become more the norm, the need to identify
and fully understand the underlying physics of failure involved in ground test failures
becomes much more critical. If Magellan had been a single-channel system, and the TWTA
had not come back on, the result would have been a catastrophic mission loss.

Discounted Ground Test Failures - Voyager 2 Anomaly

At 7.5 months, the Deep Space Network (DSN) was unable to establish an uplink with
Voyager 2. The failure was attributed to a shorted tracking loop capacitor which caused a
shift in the receiver center frequency. The redundant S-band receiver was cycled in and
failed catastrophically 20 minutes after turn-on due to an unrelated ground short. A
workaround for the first recetver failure was found by transmitting the uplink signal at a new
frequency, accommodating the center frequency shift including temperature and doppler
corrections due to spacecraft motion.

In reference (2), Charles Gonzalez summarized the findings of ground tests related to this
capacitor failure. The capacitor series, a PT 40452-031 polycarbonate manufactured by
Dearborn, exhibited similar failures during ambient fabrication/ assembly testing of the
Voyager proof test module (PTM) and again during ambient testing at the Kennedy Space
Flight Center. The capacitors are prone to dielectric punctures which are self-healing in high
voltage circuits. Its use in a high impedance, low voltage circuit seems a questionable
application of the part, and the ground test failures certainly gave adequate warning of a
possible part misapplication. The failure mechanism was postulated to be micron-sized
particles imbedded in the dielectric that cold-flowed to cause short circuits. Voyager 1 was
flown despite the known failure mechanism primarily for schedule reasons. Again, the
decision worked out positively because no such failure occurred on Voyager 1. However,
the presence of dual receivers was undoubtedly a significant factor in the decision to launch
Voyager 1. Considering the catastrophic failure of the other receiver on Voyager 2, the
capacitor failure came very close to scrubbing the Voyager 2 mission. Again, this points out
how much more critical it is to understand the underlying physics of any ground test failure
for the single channel missions of the future.
De-escalation of Failure Effect Codes

Only one instance was found which suggested a tendency toward de-escalating failure effect codes.
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This was the previously mentioned group of five spurious TWTA shut-offs that occurred on the
Magellan spacecraft. This P/FR (52231) was assigned a Failure Effect code of 1 (negligible or
insignificant effect) and a Failure Risk code of 3 (known cause/uncertain fix, some residual risk).
Any failure of the TWTA interrupted the downlink, at least momentarily, and depending on when
that happened and how long it persisted, it could have had a catastrophic impact. From the limited
data in PFAD, it isn't clear whether the interruptions were momentary or prolonged. TWTAs that
shut off probably restart on random noise, making the restart somewhat unpredictable. Nevertheless,
the FR code of 3 implies that the risk associated with the fix (presumably waiting for the TWTA to
restart) was not well understood. It seems that the FE rating of 1, is more the result of chance (i.e.,
by chance, the failures did not have a significant effect on the mission), rather than providing any
assurance that TWTA shut-off would be insignificant under other conditions.

Based on this single instance, nothing definite can be said about any tendency to reduce the failure
effect rating in P/FRs. There are obviously programmatic and career pressures that might make an
individual want to do it. This is an issue which will be watched on subsequent FAC
characterizations of the anomaly data, and if a pattern develops, it will be reported.

Memory Anomalies/CMOS Integrated Circuits

Three memory anomalies on Viking and Voyager either interrupted or degraded the uplink/downlink
process. Memory anomalies have already been identified in reference (1) as a characterization of
the data that deserves independent FAC analysis. Two of the memory anomalies and another
anomaly were due to CD-series CMOS integrated circuit-failures. CD-series integrated circuit
failures will be considered as a special subset in the investigation of memory anomalies.

Inconclusive Characterizations

In addition to the failures in Tables 1 and 2 which can be combined and characterized, one anomaly
did not lead to any clear conclusion. Viking 1 experienced an unexplained 3dB loss in Receiver
AGC gain after eleven months of operation. This anomaly had a minor effect on the mission, but
was not successfully explained.

IV.  CONCLUSIONS

Redundancy of Critical Functions

The most significant finding of this study was the fact that five of the six JPL spacecraft studied
would have experienced a catastrophic failure of the uplink and/ or downlink, except for designed-in
redundancy. All of the spacecraft studied were Class A programs sub ect to the requirement that
no single-point failures of critical functions are permitted. All of the programs were considered
successful, some for example, the two Voyagers, successful beyond all expectations. In this present
era of mission downsizing and reduced budgets for space programs, there is substantial pressure to
use less-than-Class A requirements for new systems. It is sobering to note that all but one of the
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ma or JPL programs in the past twenty years would have experienced a catastrophic failure of the
uplink/downlink except for the Class A redundancy requirement. This result has a significant
implication for future space missions and their product assurance programs. Based on prior history,
the D-1489 redundancy requirement for all critical functions of the telecommunications uplink and
downlink should not be relaxed. Considering the high expected probability of failure shown in
tigures (3) and (4), the result also applies to many non-Class A missions.

Understanding the '""Physics of Failure"

All three of the instances of ground test failures which later occurred in flight point up the need for
thorough understanding of the physics of failure involved. Only when the underlying physics is
known can accurate predictions be made of what the likely in-flight experience will be. In order to
assess the risk of launching without correcting the failure, repeatability of the failure must be certain,
and the in-flight effects must be fully understood to make sure the mission impact will be acceptable.
This becomes much more important when single-string missions are flown to reduce costs.
Situations will undoubtedly arise in which a redundant spacecraft could be launched without
correcting a ground-test failure, but the risk to a single-string mission will be unacceptable.

There are other advantages to concentrating on "physics of failure." This is probably the easiest way
to teach new spacecraft designers. Spacecraft and missions change dramatically; failure physics
does not. As an example, the fault tree analysis done on the Galileo HGA did not consider the
failure mechanisms that were later shown to be the cause of the deployment failure. There is no
guarantee that an analyst would have predicted the HGA failure, however, once it has happened,
those physical conditions that caused it should become part of the "corporate memory," and all
future spacecraft should be analyzed with that in mind.

V. RECOMMENDATIONS
The principal recommendations for product assurance programs resulting from this investigation are:

(D) Review requests for waiver of the D-1489 redundancy requirement for
uplink/downlink functions very ‘udiciously, recognizing that recent JPL history
predicts a high probability of failure for longer missions if redundancy is not
provided. The charts shown in figures 3 and 4 may be helpful in estimating the
probability of success as a function of mission length.

(2)  Avoid the use of r.f. power transistors without a protective metallic emitter barrier.
Ensure that burn-in is being performed on all power semiconductors.

(3) Make sure that the underlying physics of failure are understood when reviewing
ground test failures before a spacecraft is released for flight. Unresolved ground test
failures can reoccur in flight, and unless the failure mechanisms are fully understood,
the results of the in-flight failures cannot be predicted. Ground test failures should
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be considered "golden." They provide an opportunity to understand and fix the
failure at minimum programmatic cost.

4) Consider a thermal scan in con unction with electrical tests to locate "hot spots" that
are indicative of power devices with poor thermal conductivity to the heat sink. The
test should be easy and inexpensive to run and more effective than power-on
vibration in locating poor thermal connections.

Further analysis is required on several findings of this study:
(D) Support the investigation of thermal cycling as a means of screening out potential in-
flight failures in conunction with the Environmental Test Effectiveness Analysis

(ETEA) subtask of the PAPA.

(2) Consider the issue of possible inappropriately assigned Failure Effect codes in other
characterizations of in-flight anomalies to see if a pattern emerges.

(3) Add CD-series CMOS integrated circuit failures as a subset of the memory anomaly
characterization for future study.

(4)  Develop a check list of anecdotal data based on JPL in-flight failures that can be

used in training new design engineers and reliability analysts. This check list should
emphasize the "physics of failure" associated with the in-flight anomalies.
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